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ABSTRACT

The Faint Object Spectrograph (FOS) instrument aboard the Hubble
Space Telescope (HST) provides astronomers a moderate spectral
regsolution, low light level], analytical instrument sensitive
throughout the wavelength Eegion from below 120 nm to begond 800 nm,

8

The on-orbit performance of the HST + FOS instrument is described and
illustrated with examples If initial scientific results.

The severe spherical ¥berrat10n resulting from the misfiguring
of the HST primary mirror trongly impacts the combined HST + FOS
performance. The effects of the spherical aberration upon isolated
point sources and in complex fields such as the nuclei of galaxies
ére analyzed.

Substantial effort hn$ gone into studying possible means for
eliminating the effects of | spherical aberrati¢on. Concepts include
using image enhancement software to extract maximum gpatial and
spectral information from the existing data as well as several
options to¢ repair or compensate the HST's optical performance. 1In
particular, it may be possible to install corrective optics into the
HST which will eliminate the spherical aberration for the FOS (and
some of the other instruments). A brief description of the more
promising ideas and calculations of the expected improvements in
performance area provided,

l
1.0 INTRODUCTION
|
4.1 Overview of the FOS jastrument
\

The FOS has been designed to provide low to moderate resolution
spectroscopy of the fainte%t possigle astronomical sources throughout
the range from the far-gv,(g115 nm) to the near-IR(2800 nm).

Previous publications®’“’~”1" have described the design of the FOS and
its anticipated performance based on ground-based calibrations. we

can now compare these expeqtations to actual performance as revealed
in just under one year of gqperation on orbit.




BE- 14868 02: 49 BE3

1494-09

In its primary observing mode, the FOS provides spectroscopy
with a resolution R = A/aA » 1300 over the wavelength range from 115
to over 800 nm. The lower limit is rather sharply set by absorption
in the MgP, faceplate of the "blue" Digicon detector, and the upper
limit arisés from the gradual falloff in sensitivity of the §5-20
photocathede of the "red* Digicon detector. Low resolution
spectroscopy with R » 200 are also possible over most of this
wavelength range. a selectable set of apertures allows observations
of regions of the sky varying in size from 0.1 arcseconds to 4.3

arcseconds on & side. & v riety of aperture shapes -- 8quare pairs,
as well aa individual cire lar, rectangular, and occulting-bar
apertures -- allows the user to best select the portion of an image

for spectral analysis to ¢ rry out the chosen scientific objectives
of each observstion.

In addition to its basic spectroscopic mode, the FOS allows T
several specialized modes of operation. A polarization analyzer can
be commanded into the beam to measure linear and circular
polarization as a function of wavelength, althougg the analyzer is
optimized for UV linear polarization measurements®. Rapid-readout,
time-resolved {phase-binned), and time-tagged modes allow the
astronomer to search for periodic or aperiodic variability of targets
a8 a function of wavelength. Finally, a nondispersed mode allows
crude imaging, which is primarily used for target acquisition.

1.2 Typical FOS science programs

Astronomers will use the FOS to observe targets as near as our
own Solar System and as remote as quasistellar objects (QS0s) near
the edge of the observable universe. To illuptrate the capabilities

of the FOS for carrying out scientific observations, we discuss below
a few of the programs planned by the FOS science team members.

The astrophysical interests of the FOS science team lie
primarily in the broad area of extragalactic astrophysics. The
team's observing programg include spectroscopy of Q$0s, the nuclear
regions of both active and normal galaxies, peculiar features such as
knotsz and jetlike structures, supernovae, and planetary nebulae, In
general, the science team's is both to understand the physics
underlying the phenomena being obgerved, which are often dramatically
energetic and even violent, and to use observations of objects
throughout a large volume ¢f space to seek to understand the chemical
and structural evolution of the observable universe.

The most remote observable individual entities are the
quasistellar objects. 1t is widely believed that these extremely
luminous objects are power%d by black holes devouring thousands of
stellar masses each year., |Our scientific interest 1in QSOs includes
the desire to understand the physical processes which occur in what
must be the most extremely violent regions of the universe, and to
uSe our ability to observe such bright beacons at tremendous
distances in order to probe the chemistry of the early universe and
analyze the distribution of matter along the lines of sight to these
objects. [Observations of distant targets automatically involves
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centering of targets in the aperture which will be used for
observations if miscentering of the target will strongly affect the
science results.

Motions along the direction of dispersian during spectroscopic
obgervations slightly reduce the spectral resolution by effectively
streaking the spectrum alo g itself. Normal readouts of FOS
exposures are frequent enough (typically, evary 2 minutes) so that
little logs of spectral resolution occurs during one incremental
accumulation time. The integrated spectrum from the entire exposure
will typically have diminished spectral resolution due to the shifts
of the spectrum from magnetic field variations. The full spectral
resolution can be fully recovered by separately shifting each
spectrum from each short readout by an amount which can be calculated
from a model of the earth'; magnetic field, the pointing and roll
angle of the HST, and the geometry of the FOS detectors with respect
to the HST. Needless to say, this is tedious enough that we plan to
eliminate the problem as spon as possible by using our deflection
colls to actively null out the effects of variations in the earth's
magnetic field,.

Motlons of the electrons perpendicular tp the dispersion
direction may result in va ying amounts of the signal falling off the
ends of the diocde arrays. | Because the spectrp are not perfectly
aligned along the length of the diode array, and becauge
imperfections in the electric and magnetic fields within the Digicons
produce some image distortion (C-distortion and S-distortion
primarily), image shifts can produce variations in count rates which
are pixel dependent. For pectra, such variations will produce
low-frequency spectrophotometric errors. The effect is worse when
larger apertures are used,|since less motion is needed to cause loss
of light over the ends of the diodes., Active control of the
deflection coils will eliminate this problem completely.

2.4,3 Par-uyv Response

Might errors in the ground-based calibration account for the
discrepancy in the FoS far+uv sensitivity described in Section 2,17
In view of the difficulty of performing absolute photometric
calibrations in the far-UV, an error in the original ground-based
calibrations cannot be dismissed out of hand. However, comparison of
the FOS and the Goddard High Resoclution Spectrograph (GHRS)
measurements on standard stars indicate a true decreese in FOS
efficiency below 150 nm larger than what would be expected from the
difference in Digicon faceplate materials and photocathode types. Wwe
have identified two plausi?le explanations for the reduced far-uv
efficiency. [

One possibility is that the photocathode of the blue Digicon has
accumulated a thin layer of a hydrocarbon contaminant, which can
produce absorption in the far-UV region. Because the Photocathodes
are cooled by heat pipes connected to a radianr, contaminant sources
might collect preferentially on the Digicon windows. However, the
far-Uv sensitivity appearstnot to have varied either on orbit nor
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The observations of 3C 273 most directly address the tradeoff

between signal intensity and spectral resolution.
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Even with 2 to 4 times more gignal per unit
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of Figure 3.1-1

to the information content of the other two spectra.
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Figure 3.1-3 is fully as good

8s the small aperture spectrum of Figure 3.1-2, and can be obtained

with a shorter exposure.
not negligible due to geoc
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The three spectra do +ndicate a change in the likely usage of
the various FOS apertures,| with good point spread functions, we
expected to use primarily the 0.3 arcsecond circular and .25
arcsecond square apertures, with the slit aperture relegated to use
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function meets its design goals for resolving individual bright
pointlike sources. The candidate star for the nova resolved into a
half dozen images within & 0.5 arcsecond region. The spherical
aberration guarantees that spectra of individual ocbjects in this
region are impossible to obtain, since significant amounts of light
from several of them will invariably be mixed into any entrance
aperture no matter how =small. As of late February, we have obtained
a spectrum which inecludes several of these candidate objects, but
have not been able to identify the nova.

4.0 Impact of NST spherical aberration

As the sample programs above make clear, the presence of
spherical aberration in the HST strongly impacte spectrascopic
science investigations. For moderately bright, well isolated point
sources, the effect is some combination of increased exposure time
and decreased spectral resplution. For closgﬁy spaced pointlike
objects or continuum sources, the impact is fmr more severe. The
spatial mixing results in gevere degradation of signal-to-noise
ratios, reduced spatial information, and major increases in required
exposure times.

For other programs, the effect is yet more severe: they simply
cannot be done. The loss jin collected 1ight means that the faintesi
objects simply become unobservable. Similarly, programa which
require studying faint structures near bright sources, such as
galaxies which may surroun Q30s, are simply impossible; the halo of
the point spread function from the bright object simply overwhelms
the faint structures of interest. sSpatial mixing degrades the
signal-to-necise ratio for all studies of extended objects; for faint
targets such as supernovae| in distant galaxieg, this loss of
information is likely to prove fatal to many gcientific

|

investigations. |
5.0 compensating for spherical aberration
|
Because many of HST's highest priority research programs are
made difficult or impossible by the presence of spherical aberration,
the HST community has vigo ously sought ways to ameliorate or correct
the problem. Possible ways to restore the full capebilities of the
HST range from minor improvements to radical replacement, near-term

to turn-of-the-century, and nearly free to impracticably expensive
solutions.

aul-flanga.at-Agocanches

In the short term, defined as before the next $huttle mission to
service HST, the only techniques to deal with the spherical
aberration involve cleverness in observing strategy and in data
analysis. The ERO/SAO programs were designed to improve our
cleverness in observing strategy. The advice  of experts 1n image
deconvolution technigues from within and without the astronomical




a7-11-88 B3: 42

community has been sought
HST data. While both opti
use of image regtoration t
excellent science with a g
allow astronomers to perfqg
scientific investigations

To conduct investigat
resolution and faint limit
designed, we must correct
Political and fiscal reali
the optics of the HST (or
backup primary mirror). H
instruments for the spheri
planned.

owever, o

@1z

1494-09

to improve our cleve
mized observing stxa
echniques will allow
pherically-aberratad
rm some of the HST!'
for which it was by

rness at analyzing the
tegy and intelligent
us8 to carry out much
HST, they will not

] 2ighest priority

ilt.

ions makin

g use of the full angular
ing magnit

udes for which the HST was

OL compensate the spherical aberration.
ties probably preclude actually correcting
replacing HST with a clone built around the
ptice to compensate individual

cal aberration are both possible and

The replacement wide
will incorporate correctiv
essentially the full desig
with an ideal HST. The WF
the first shuttle servicin
This will restore m
but will leave the highest
all spectroscopic capabili
Installation of the Space
the second Shuttle mission
restore the full range of
plang to obtain the ultima
compensated FOC exist curr

5.2 Optical compensation b

The leisurely pace fo
above is unacceptable to m
quicker solutions to resto
use of many of the current
The most promising approac
Optics Space Telescope Axi
fabricate a set of correct
fits into an axial instrum
gservicing mission, both th
installed, fully restoring
spectroscopic design capab
capabilities over a portio
or early 13894, the HST cou
capabilities,

Installation ¢of the
the HST + FOS to its full
in the COSTAR mean that th
one-half magnitude brighte
been fabricated properly.
magnitudes improvement ove
pointlike objects and even

e

ield/Planetary Camera,

internal optics which will restore

imaging capabilit{ of the original Wr/PC
PC II is to be installed into the HST on

misgion planned in late 1993 or early
uch of HST's intended imaging capability,
spatial resolution imaging of the FOC and
ties uncorrected for spherical aberration.
relescope Imaging Spectrometer (STIS) with
to HST (planned for 1996 or 1997) will

known as WF/PC 11,

pectroscopic capability. No definite
e spatial resolution in imagery through a
ntly.

Ardware

¢ restoring HST capsbilities described
any. This has led to attempts to define
ring HST's design capabilities which make
instruments already installed on the HST.
1_identified to date is the Corrective
1l Replacement (COSTAR). The idea is to
ve optics for the EOC, FOS, and GHRS which
nt enclosure. On the first Shuttle
COSTAR and the WF/PC II are to be
the WF/PC imaging Tnd the FOS and GHRS
lities, and restoring the FoOC imaging
of its field of view. Thus, by late 1993
d be restored to nearly its full design

cdsTAR can restore the angular resolution of

design capability. The two extra mirrors
limiting magnitude would remain about
than would have bgen the case had HST
S5till, this represzdnts about two
the present situation for isolated
greater gains for extended or complex

r\

r
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source distributions, The
COSTAR 1s spectropolarimet
means that its mirrors sha
polarimetric observations,
effects of apherical aberr

r

a

As of late February,
not yet decided whether to
is the quick restoration o
capabilities. 1Its rigk is
demanding schedule. Of co
negligible issue.

W

A1

uld be remov

f HST to nearly its f
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only FOS capability not restored with the
Y:; the off-axis design necessary in COSTAR
ed from the beam for

which thus would suffer ag now from the
tieon,

hen this paper is being written, NASA has
baseline the COsTAR ogtion. Itg promise
ull design
g in a

the technical effort require
rse, paying for its development is not a

For the F0OS, the
all of the instrument's sc
compromised by spherical a
the FOS, it is possible to
aberration, so that the fuy
to search for black holes
galaxies, to use distant =
9y, @nd to determine the n
qgasistellar objects. The
are the programs for which
the public. The promise o
science programs is so gre
urges NASA to proceed with|
up the effort only if tech
significant cost growth ma
the firast Shuttle servicinT

Support for FOS work

NAS5-29293 is gratefully acknowle
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iST pointing) many ¢f the observations

support of FOS target acquj
early unreliable phase of
described in this paper.

1.
R. Bohlin, E. M. Burbidge,
and B. Margon, “Faint-objeq
optigs, Proc. SPIE, Vol. 18
2. R. ¢. Allen and J. R.

COSTAR offers the means to recove

R, J. Harms, R. Angel

r virtually
entific capabilities now seriously
erration. For the small fields of view of
completely compensete for HST's spherical
1l angular resolutipn will allow scientists
n the nuclei of normal and aative
pernovae to measure the values for H. and
ture of the diffuse material surrounﬁing
e and similarly exgiting investigations
the HST was built at such great cost to
the COSTAR for engancing FOS and other
t that the FOS science team unanimously
the COSTAR effort at high priority, giving
ical infeasibility, schedule slippage, or
@ its successful jnstallation into HST on
mission impossible,

rovided by NASA Coptracts NAS5-24463 and
dged. The authors thank the many
ineering team whose efforts over 14
ess of the FOS program. We
heroic efforts of George Hartig
development effort which have

the FOS optics, and his ongoing

e the
e FO3

1.0 REFERENCES

» F. Bartko, E. Beaver, W. Bloomquist,
A. F. Davidsen, J. C. Flemming, H. Ford,
t spectrograph for Space Telescope, " Space
3, pPp. 74-87, May 1979,
P. Angel, "Performance of the




Pt

% A 7] 11:32 814

1494-09

spectropolarimeter for the Space Telescope faint object

spectrograph, " donsfrumentation in Astropomy IV, Proc. SPIE, Vol. 331,

PD. 289-267, March 1982.
3. R, J. Harms, J. R. P. Angsl, F. Bartko, E. A. Beaver,

R. Bohlin, E. M. Burbidge, A. F. Davidsen, H., Ford, B. Marqgon,

J. McCoy, and L. Ripp, “Paint object gpectrograph (FOS) calibration, "

' + Proc. SPIE, Vol. 331, pp., 268-278,

March 1982,
4. R. J. Harms and the FO5 sScience and Engineering Team,

"Astronomical capabilities of the Faint Object Spectrograph on Space
Telescope, " » NASA CP-2244, pp. 55-75.
August 1982. |

5. Bruce Margen, Scott F. Anderson, Ronald A. Downes, Ralph
C. Bohlin, and Peter Jakobsen, "Faint Object Camera Observations of a
Globular Cluster Nova Field, " accepted for publication in The
, March 1991.




